Meta-analysis of Association between TCF7L2 rs7903146 and Risk of New-Onset Diabetes After Transplantation

Muhammad Tassaduq Khan, Rashid Bin Hamid, Naranjan Lal
Renal Transplant Unit, Dow University Of Health Sciences, Karachi, Pakistan
DOI: 10.53778/pjkd602201

Background: Single nucleotide polymorphisms may influence the risk of development of new-onset diabetes after transplantation (NODAT), a post-transplant clinical complication that is often implicated in allograft rejection and mortality. We performed a meta-analysis of association between TCF7L2 rs7903146 and risk of post-transplant diabetes mellitus.

Methods: A systematic search was conducted using PubMed and ScienceDirect electronic databases for studies published between January 2001 to January 2021. Case-control or cohort studies reporting association between NODAT (diagnosis based on American Diabetes Association [ADA] criteria) and TCF7L2 rs7903146 were included. MetaGenyo was used for meta-analysis (random effects model). Pooled odds ratios with 95% confidence intervals were reported to evaluate the strengths of association.

Results: Two reviewers independently screened for articles. A total of six case-control studies were included for full-text review and quantitative analysis after screening for eligibility. Genotypic distributions were in Hardy-Weinberg equilibrium for included studies. All papers reported statistically significant association of TCF7L2 rs7903146 for risk of NODAT, except for one study. There was moderate heterogeneity among studies ($I^2 = 60.6\%$). Pooled analysis revealed 51% odds of developing NODAT with TCF7L2 rs7903146 T allele (Allele Contrast Model: OR = 1.51, 95% CI 1.13 – 2.02, adjusted p = 0.03).

Conclusion: The present meta-analysis demonstrated association between TCF7L2 variant rs7903146 and risk of developing NODAT. This finding may have clinical implications for individuals undergoing kidney transplantation.